Compressed Time Delay Neural Network for Small-Footprint Keyword Spotting
نویسندگان
چکیده
In this paper we investigate a time delay neural network (TDNN) for a keyword spotting task that requires low CPU, memory and latency. The TDNN is trained with transfer learning and multi-task learning. Temporal subsampling enabled by the time delay architecture reduces computational complexity. We propose to apply singular value decomposition (SVD) to further reduce TDNN complexity. This allows us to first train a larger full-rank TDNN model which is not limited byCPU/memory constraints. The larger TDNN usually achieves better performance. Afterwards, its size can be compressed by SVD to meet the budget requirements. Hidden Markov models (HMM) are used in conjunction with the networks to perform keyword detection and performance is measured in terms of area under the curve (AUC) for detection error tradeoff (DET) curves. Our experimental results on a large in-house far-field corpus show that the full-rank TDNN achieves a 19.7% DET AUC reduction compared to a similar-size deep neural network (DNN) baseline. If we train a larger size full-rank TDNN first and then reduce it via SVD to the comparable size of the DNN, we obtain a 37.6% reduction in DET AUC compared to the DNN baseline.
منابع مشابه
Deep Residual Learning for Small-Footprint Keyword Spotting
We explore the application of deep residual learning and dilated convolutions to the keyword spotting task, using the recently-released Google Speech Commands Dataset as our benchmark. Our best residual network (ResNet) implementation significantly outperforms Google’s previous convolutional neural networks in terms of accuracy. By varying model depth and width, we can achieve compact models th...
متن کاملAn Experimental Analysis of the Power Consumption of Convolutional Neural Networks for Keyword Spotting
Nearly all previous work on small-footprint keyword spotting with neural networks quantify model footprint in terms of the number of parameters and multiply operations for an inference pass. These values are, however, proxy measures since empirical performance in actual deployments is determined by many factors. In this paper, we study the power consumption of a family of convolutional neural n...
متن کاملSmall-footprint Keyword Spotting Using Deep Neural Network and Connectionist Temporal Classifier
Mainly for the sake of solving the lack of keyword-specific data, we propose one Keyword Spotting (KWS) system using Deep Neural Network (DNN) and Connectionist Temporal Classifier (CTC) on power-constrained small-footprint mobile devices, taking full advantage of general corpus from continuous speech recognition which is of great amount. DNN is to directly predict the posterior of phoneme unit...
متن کاملConvolutional neural networks for small-footprint keyword spotting
We explore using Convolutional Neural Networks (CNNs) for a small-footprint keyword spotting (KWS) task. CNNs are attractive for KWS since they have been shown to outperform DNNs with far fewer parameters. We consider two different applications in our work, one where we limit the number of multiplications of the KWS system, and another where we limit the number of parameters. We present new CNN...
متن کاملConvolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting
Keyword spotting (KWS) constitutes a major component of human-technology interfaces. Maximizing the detection accuracy at a low false alarm (FA) rate, while minimizing the footprint size, latency and complexity are the goals for KWS. Towards achieving them, we study Convolutional Recurrent Neural Networks (CRNNs). Inspired by large-scale state-ofthe-art speech recognition systems, we combine th...
متن کامل